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Synchrony arising from a balanced synaptic plasticity in a network
of heterogeneous neural oscillators
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We investigate the dynamics of a recurrent network of coupled heterogeneous neural oscillators with ex-
perimentally observed spike-timing-dependent synaptic plasticity. We show both theoretically and by computer
simulations that, in a regime of a balance between synaptic potentiation and depression, the network of such
oscillators converges to a stable synchronous state. The stability of this state is fostered by flexible synaptic
weights which adjust themselves based on the relative timing of firing of pre- and postsynaptic oscillators.
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Synchrony of neural activity is a widespread phenomenon de, ¢ N
occurring in different parts of the mammalian cerebral cortex —— =0t 2 kij[aQ(0;— 6;)
[1] and it could play a substantial functional role. For ex- dt (N=D=
ample, it has been suggested that synchrony may be impor- +be (OH(6,— 6)] 1)
tant in cognitive task$2,3], as well as in creating transient g oo
cell assemblief4,5], which can efficiently transmit informa- dc;;
tion to downstream cortical networks. Various mechanisms d—t'=gfl-“si(t)u,—(t)—gi(j’)sj(t)ui(t), 2
of neural synchrony have been investigated. It follows from
those studies that in networks with inhibitory interactions du us ()
synchrony is more robust than in networks with excitatory — =151, 3)
coupling along6-9]. dt
Synchronous activity of neurons can also influence the . . . .
ori,j=1,... N, and where#,(t) is the phase of an oscil-

strength of synaptic connections between cortical circuit : o ) .
[10,11; the phenomenon hypothesized to be linked to |0ng__ator|, wj Is its uncouple_d frequency3 am_jj is a connectiv-
term memory[10,12. Recent experimental studigs3—15 ity matrix fO( a connegnon_from oscﬂ!atqrto i It assumes
indicate that excitatory synapses are very sensitive to thi'€ value 1 if the oscillatoy is synaptically connected %
temporal order of firing of pre- and postsynaptic neurons. 1f2nd zero otherwiseQ(x) and H(x) are standard coupling

a presynaptic spike precedes a postsynaptic action potenti&lncuon_s representing, respectively, |nh|b|to_ry and excitatory
then the synapse is potentiated; if the temporal order of firindteractions. The parameteasandb are positive constants
is reversed then the synapse is depressed. The temporal wifi€asuring the relative strength of inhibition and excitation.

dow for these changes is of the order of 10—20 msec, Sug'[he symbole denotes some numerical parameter that sets the

gesting that this type of spike-timing-dependent synapticsca!e for the mag_nitudg of the co_upl_ing. We assume th_at the
plasticity is basically short-term, although it can have long-€xcitatory synaptic efficacg;;(t) is time dependent, with

term consequencdd6]. It has been demonstrated that the dynamics given by Eq(2). The first term on the right-hand
sensitivity of this synaptic rule to timing can be functionally Side in Eq.(+2) corresponds to a synaptic potentiation with
useful, since it facilitates learning of a temporally varying amplitudegf;”), while the second term corresponds to a de-
input to a networK17]. pression with amplitudgi(j_) . Both amplitudes are assumed
In this paper, we study the influence of the spike-timing-to be c;j-independent constants. We also assume that the
dependent synaptic plasticity on coherent states in heterog&alue of the synaptic efficacy is bounded between 0 and 1.
neous networks of oscillators. In particular, we investigate ifThe functionu;(t) characterizes the activity of the oscillator
excitatory synapses with the above form of plasticity cani, and its time evolution is given by E3), with u being a
generate a stable synchronous state and under what contiime constant related to a temporal window for pre- and
tions. We find that, in the most competitive regime for syn-postsynaptic spikes, in which spike-timing-dependent plas-
aptic plasticity, i.e., when there is a balance between synaptiicity is possible. The functiors;(t) is the probability of
potentiation and depression, the network of heterogeneou#ing of the oscillatori per time unit. We assume that each
oscillators converges to a globally synchronous state under @scillator fires when its phase is equal to a multiple af 2
wide range of the network parameters. This finding suggestand we chooses;(t)=A; exd —B(1—cos6)], where A;
that not only inhibitory coupling but also plastic excitatory ~ w;(8/27)Y? is a constant coming from normalization of

synapses can foster global coherence. si(t) over one period of oscillation< 27/ w;) to 1, andg is
The dynamics of the system composed\bbscillators is  a unitless measure of noise amplitude in the system. Noise is
described by the following set of equations: absent whernB=<«, and it is maximal wherB=0. Finally,
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Egs.(2) and(3) together describe the synaptic dynamics in a 1r
form equivalent to that reported experimentally recently ! @
[13-15. 0.8r
First, we study a system dfi=2 coupled heterogenous
oscillators (1o= k=1, k1= kKk2,=0). We perform both 0.6

theoretical analysis and computer simulations. In the theoret-
ical analysis we assume that the synaptic plasticity is slow _ 0.4
and the coupling is weak, i.es<1. In simulations we do not <
make these assumptions. The theoretical analysis of this
small network enables us to gain some insight about the
behavior of a larger network. Since our goal is to examine
the possibility of coherent states in the network, we look for

a phase-locked solution to the system described by @ys.

0.2f

(3), i.e., 01(t) = Qt+ ¢4 and 6,(1) = Qt+ ¢,, whereg, and _0.4 . ‘ ‘ ‘ .

¢, are some time-independent residual phases (higlthe 0 100 200 ﬁmio(gns) 400 500 600
emerging global frequency of oscillations. In this phase-

locked state the rate of change of the synaptic effiagagy 1.2

will oscillate in time with the frequenc{. Using Eq.(3) and

the expression fag; one can determine that the time constant 1l
7, associated with this change is determined completely
by w;, w,, and x4 and is given by rp~(pwiw)
~(nQ? 1 The limit of slow synaptic plasticity corre-
sponds tou)<<1. In this limit, we have two separate time
scales: the slow, and fast period of oscillations7(}, sat-
isfying 7,{2>1. This fact allows us to perform averaging of
dg;; /dt over the period of fast oscillations. After that opera-
tion we find

synaptic strength
o o
o ™

©
~
:

0.2
dc; PBupowwe P (= ‘ ‘ . . .
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0 time (ms)
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wherec;; is a time-averaged synaptic strength differing from
the originalc;; by a quantity of the order oO((rpQ)*l)
[18], andl, is a zero-order Bessel function. From this for-
mula, it follows that the dynamics of the average synaptic
strength depends mainly on the relative phase of the two

synaptic strength
o
[

©
~
:

coupled oscillators. This feature ensures that, wlgﬁﬁ) 0.2

#g;”), afixed point solution foc;; is achieved when there

is a finite phase lock, that isp;— ¢,#0. However, when 0 ‘ ‘ . . .
(M=g{7, the case of perfect balance between the synaptic 0 100 200 300 ~ 400 500 600

21, . - . time (ms)
potentiation and depression, there are two fixed points: one

corresponding to a synchronous state, ife.= ¢, and the FIG. 1. Weak vs strong coupling and heterogendy.Depen-
second corresponding to an antiphase solufign— ¢, dence of the phase difference functitd = sin{[ 6,(t)— 6,(t)1/2} be-

= . Below, we show that only the synchronous solution istween two oscillators on the time course. Solid line corresponds to
stable if we make a reasonable choice for@andH func-  weak coupling €=0.1); dashed line corresponds to strong cou-
tions. The case of the perfect balance between potentiatiogling (e=0.5). A corresponding dependence of the synaptic
and depression leads to the most competitive situation fostrength on the time course in the weak coupliiy and strong
synaptic weights terminating on the same postsynaptic netecoupling(c) limits. Parameters used in simulations: weak coupling,
ron[16,19. Also note that the time constaptcannot be too  €=0.1, u=5ms, w;=0.085 ms?!, w,=0.092 ms?; strong cou-
small, i.e., the quantity{) cannot approach zero, since then pling, e=0.5, u=5ms, w;=0.029 ms*, w,=0.061 ms*. Other
convergence to synchrony is very slow. parametersa=0.12,b=0.15, 3=50, are the same in both cases.
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FIG. 2. Slow vs fast synaptic plasticity. Dependence of the
phase difference functiond between two oscillators on the time
course. Solid line corresponds to slow synaptic plasticjif)(
~0.2); dashed line corresponds to fast synaptic plasticity) (
~1.3). Parameters used in simulations: slow plasticidy,
=0.017 ms?, w,=0.023ms?!, a=0.036,b=0.045; fast plastic-
ity, w;=0.11 ms?!, w,=0.15ms !, a=0.24,b=0.30. Other pa-
rametersu =10 ms, e=0.3, =50, are the same in both cases.

FIG. 3. Effect of sparseness of connections on synchrony. Ac-
tivity of N=50 oscillators as a function of time. Dots denote firing
times of a given oscillator. For every excitatory synapse we took
9{”=g{". Parameters useg:=5 ms, e=0.3, average connectiv-
ity 25%, a=0.48,b=0.60, 3=50. Frequencies; are uniformly
distributed between 0.08 m&and 0.12 ms™.

wherei,j=1,2(#]j) and the functionF(Q,u,k) is given

In the synchronous state the global frequency of oscilla-by

tions must satisfy two equations{)=w;+ e[aQ(0) o
+bcij(*)H(0)] for i,j=1,2. They suggest that the magni- F(Q,,u,k)zf dxe X4
tude of the emerging frequency is of the ordekgf, w,, and 0

that the difference in the frequencigs, — w,|~O(€). The

latter condition implies that the oscillators’ heterogeneity X
must be of the same order of magnitude as the synaptic cou-
pling strength, that is, weak, in order to obtain a s;ynchronoualherel
solution.

mQX+ K
COST

2p

L QXA+ kw‘ p QX+ K
COSs 2 |tar‘. > ,

()

1(x) is a first-order Bessel function.

. . . Equations (5) and (6) represent the stability equa-
Next, we perform a linear stability analysis for the two tions, which can be rewritten in a shorter notation as

fixed points. We look for a solution in the formy (t) =Qt d(8X)/dt=M&X, with a four-dimensional vectorsX
Jwigc(:z)l((tt))(l ?Z—(tl)g)ﬂ\}v;grgj—éf(zlgt—),l)?gr(jthzjg/)nTZﬁ;jo(;oc))us =(8¢h1,0662,5C12,6C,1) and a 4<4 stability matrix M.

1] 1) T 4 ) - - . . . .
(antiphasg solution. Expanding Eq(l) for small 5¢; and This matrix has two degenerate zero eigenvalues, the first

: . N . . being a consequence of the translational phase invariance
averaging over the period of oscillations, we find the tlme(the functionsQ andH depend only on the relative phase of
evolution of averag&¢; in the form

the oscillatorg, and the second corresponding to a conserva-
tion law associated with the total synaptic strength between

doo; , J. ) J. two reciprocally connected oscillatafse., C15(t) +Co4(t) is
at e{[aQ"((—1)’km)+bcjj(*)H"((—1)’km)] time independent The remaining two eigenvalues are nega-
- o tive, i.e., the corresponding fixed point is stable, only if the

X (8¢;— 6¢pi) +bH((—1)'km) ey}, (5)  following two conditions are satisfiedi) a[Q’(kw)+Q’

(—km)]+b[ciy(°)H" (km) +C(*)H’(—km)]>0,  and
wherei,j=1,2 andi#j. Note that the fluctuations in re- (i) P[H(km)+H(=km)]F(€Q,u,k)>0, where the prime
sidual phases are slowly varying in time, in particular on adenotes a derivative. For many biophysical modes,21]
much slower time scale than the period of oscillations. Thighe coupling functions1 and Q can be compute{22] and
information enables us to use the same averaging method W€ have that(0)>0H'(0)>0Q"(0)>0, andH'(* m)
determining the time evolution of fluctuations in the synaptic<0.Q"(* 7)<0. Using these inequalities we find that only

strength as we did in the existence part. This procedure geR€ conditions corresponding to the synchronous fixed point
erates the following equations: (k=0) are satisfied. The antiphase solutidt=() breaks

condition(i). These results suggest that only the synchronous
state is stable.
~7 7 It is interesting to ask how sensitive the synchronization is
F(Q,u,K) (85— d¢y), 6 . . : :
(@ k)0 = 5) © to the assumption of weak coupling between oscillators, their

d%” . ,B,U#wiwjefzﬁ
dt
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weak heterogeneity, and slow synaptic plasticity. In Fig. 1 we 50
display the results of simulations of two coupled oscillators

with different levels of synaptic coupling and oscillator het- L
erogeneity. We used random initial conditions for the values 40r- .- *. . oo L]
of phases and synaptic strengths, and we tQgk) =sinx B A
and H(x)=cosx+ysinx (y is a small positive constant
There is a close relationship between the strength of coupling 5
and the level of heterogeneity. In the case of a weak hetero-=
geneity[ 2| w; — |/ (wq+ w,)~0.08], the coupling must be
weak too, in order to obtain a synchronous state. For strong 3
heterogeneity [2|w;— w,|/(w1+ w,)=~0.70], synchrony E
emerges only in the strong coupling limit. These results sug- 4| :
gest that the key factor in achieving synchrony is that the
synaptic coupling must be of the same order of magnitude as

the oscillator heterogeneity, and additionally that this hetero- gL— - : . L : :

geneity does not have to be weak. Interestingly, for the 9 100 200 timgo(%s) 400 500 600
strong coupling/heterogeneity regime, synchrony is achieved

even faster than for weak coupling/heterogeneity. The syn- F|G. 4. Impact of synaptic plasticity imbalance on synchrony.
apses achieve equilibrium at about the same time that thghe amplitude of imbalance between potentiation and depression is
synchronous state emerggsgs. 1b) and 1c)]. Note also q=0.2. Frequencieso; are uniformly distributed between 0.07
that the sum of synaptic strengths does not depend on timens ! and 0.13 ms?. Other parameters and notation are the same as
which is a consequence of E@®). We also performed simu- in Fig. 3.

lations of two coupled oscillators with slow and fast synaptic ,_ _ ) _
plasticity (Fig. 2). This small network converges to a syn- 9ij | — &j, Wherea;; is some nonsymmetric random matrix

chronous state only when the synaptic plasticity time con@nd 7 are uniformly distributed between1 and 1. The

stantr, is much larger than the period of oscillations/2 ﬁtée?h%i?rﬁgﬂesatshﬁgﬁ,a pgtpeur:gg?en doggsgglifézgge;en-
(slow synapses When the period is increased, i.er,() PP y yPp P y

N . apses. We varied the imbalance parametdrom zero to
1 (fast_ synapsgsthen th? sync_hro_ny is unstable ar_1d thesome small finite value and examined how this affects the
phase differenc#,— 6, oscillates in time around zerd-ig.

T2 . . nchrony. Again, it turn hat th r f synchrony i
2). These oscillations also manifest themselves in corresy chrony. Again, it turns out that the degree of synchrony is

sponding changes in the synaptic strengtist shows. quite high even for substantial values gfstrong heteroge-

In Figs. 3 and 4 t th its of simulati neity, and low random connectedné&ay. 4). It is interest-
N FIgs. 5 and 4, we present the resutts of simulations Ori‘ng to note that the synchrony is insensitive to the topology
the dynamics of a large network containiNg=50 heteroge-

__of oscillator connectivity, i.e., the synchrony is stable for
Both symmetridreciproca) and nonsymmetric matrices; .
We investigated a network of heterogeneous neural oscil-

30b-

number
(=]

llato
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w; (i=1,... N) are distributed uniformly between some

®@min 8Nd Wmay, the coup!mg IS queratee% 0.3), and the lators with plastic excitatory synapses. In the regime in
elements of the connectivity matrkg; are random and non- ich there is a balance, even imperfect, between potentia-
symmetric with diagonal elements equal to zero. We are prigon a0 depression in the synaptic efficacies, we find that the
marily interested in how(i) sparseness in synaptic CONNec- honyork converges to a stable synchronous state. Such a bal-
tions, (ii) an imbalance in the synaptic potentiation a”danced state could be produced by some, as yet unknown
depression, andii) the topology of the connectivity matrix ¢ hrocess, which regulates the interplay between poten-

influence the synchronization. In the regime of perfect balyi,tion and depression. Note that synchronization, which is a

ance between potentiation and depression the synchrony,q, ot of this balanced state, is fostered by the plastic ex-
turns out to be insensitive to the degree of network CONNECgitation, and inhibition does not play a part in it. This fact

tivity up to a very low connectedness. As an example, in Figeq 4 have functional implications for synchronization be-

3 we display the activity of oscillators as a function of ime yee cortical areas, which are connected primarily by exci-
in a sparsely connected random netw(k% average con- tatory synapses

nectivity). Note that synchrony is achieved after only a few
spikes. A regime of imbalance between potentiation and The work was supported by NSF Grant No. DMS
depression is modeled by puttirgf;")=(1+q7;)a; and 9972913
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