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Synchrony arising from a balanced synaptic plasticity in a network
of heterogeneous neural oscillators
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We investigate the dynamics of a recurrent network of coupled heterogeneous neural oscillators with ex-
perimentally observed spike-timing-dependent synaptic plasticity. We show both theoretically and by computer
simulations that, in a regime of a balance between synaptic potentiation and depression, the network of such
oscillators converges to a stable synchronous state. The stability of this state is fostered by flexible synaptic
weights which adjust themselves based on the relative timing of firing of pre- and postsynaptic oscillators.
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Synchrony of neural activity is a widespread phenomen
occurring in different parts of the mammalian cerebral cor
@1# and it could play a substantial functional role. For e
ample, it has been suggested that synchrony may be im
tant in cognitive tasks@2,3#, as well as in creating transien
cell assemblies@4,5#, which can efficiently transmit informa
tion to downstream cortical networks. Various mechanis
of neural synchrony have been investigated. It follows fro
those studies that in networks with inhibitory interactio
synchrony is more robust than in networks with excitato
coupling alone@6–9#.

Synchronous activity of neurons can also influence
strength of synaptic connections between cortical circ
@10,11#; the phenomenon hypothesized to be linked to lo
term memory@10,12#. Recent experimental studies@13–15#
indicate that excitatory synapses are very sensitive to
temporal order of firing of pre- and postsynaptic neurons
a presynaptic spike precedes a postsynaptic action pote
then the synapse is potentiated; if the temporal order of fir
is reversed then the synapse is depressed. The temporal
dow for these changes is of the order of 10–20 msec, s
gesting that this type of spike-timing-dependent synap
plasticity is basically short-term, although it can have lon
term consequences@16#. It has been demonstrated that t
sensitivity of this synaptic rule to timing can be functiona
useful, since it facilitates learning of a temporally varyin
input to a network@17#.

In this paper, we study the influence of the spike-timin
dependent synaptic plasticity on coherent states in heter
neous networks of oscillators. In particular, we investigate
excitatory synapses with the above form of plasticity c
generate a stable synchronous state and under what c
tions. We find that, in the most competitive regime for sy
aptic plasticity, i.e., when there is a balance between syna
potentiation and depression, the network of heterogene
oscillators converges to a globally synchronous state und
wide range of the network parameters. This finding sugg
that not only inhibitory coupling but also plastic excitato
synapses can foster global coherence.

The dynamics of the system composed ofN oscillators is
described by the following set of equations:
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du i

dt
5v i1

e

~N21! (j 51

N

k i j @aQ~u j2u i !

1bci j ~ t !H~u j2u i !#, ~1!

dci j

dt
5gi j

~1 !si~ t !uj~ t !2gi j
~2 !sj~ t !ui~ t !, ~2!

dui

dt
52

ui~ t !

m
1si~ t !, ~3!

for i , j 51, . . . ,N, and whereu i(t) is the phase of an oscil
lator i , v i is its uncoupled frequency, andk i j is a connectiv-
ity matrix for a connection from oscillatorj to i. It assumes
the value 1 if the oscillatorj is synaptically connected toi,
and zero otherwise.Q(x) and H(x) are standard coupling
functions representing, respectively, inhibitory and excitat
interactions. The parametersa and b are positive constants
measuring the relative strength of inhibition and excitatio
The symbole denotes some numerical parameter that sets
scale for the magnitude of the coupling. We assume that
excitatory synaptic efficacyci j (t) is time dependent, with
dynamics given by Eq.~2!. The first term on the right-hand
side in Eq.~2! corresponds to a synaptic potentiation wi
amplitudegi j

(1) , while the second term corresponds to a d
pression with amplitudegi j

(2) . Both amplitudes are assume
to be ci j -independent constants. We also assume that
value of the synaptic efficacy is bounded between 0 and
The functionui(t) characterizes the activity of the oscillato
i, and its time evolution is given by Eq.~3!, with m being a
time constant related to a temporal window for pre- a
postsynaptic spikes, in which spike-timing-dependent pl
ticity is possible. The functionsi(t) is the probability of
firing of the oscillatori per time unit. We assume that eac
oscillator fires when its phase is equal to a multiple of 2p,
and we choosesi(t)5Ai exp@2b(12cosui)#, where Ai
'v i(b/2p)1/2 is a constant coming from normalization o
si(t) over one period of oscillation (52p/v i) to 1, andb is
a unitless measure of noise amplitude in the system. Nois
absent whenb5`, and it is maximal whenb50. Finally,
©2002 The American Physical Society02-1
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Eqs.~2! and~3! together describe the synaptic dynamics in
form equivalent to that reported experimentally recen
@13–15#.

First, we study a system ofN52 coupled heterogenou
oscillators (k125k2151,k115k2250). We perform both
theoretical analysis and computer simulations. In the theo
ical analysis we assume that the synaptic plasticity is s
and the coupling is weak, i.e.,e!1. In simulations we do no
make these assumptions. The theoretical analysis of
small network enables us to gain some insight about
behavior of a larger network. Since our goal is to exam
the possibility of coherent states in the network, we look
a phase-locked solution to the system described by Eqs.~1!–
~3!, i.e.,u1(t)5Vt1f1 andu2(t)5Vt1f2 , wheref1 and
f2 are some time-independent residual phases, andV is the
emerging global frequency of oscillations. In this phas
locked state the rate of change of the synaptic efficacyci j
will oscillate in time with the frequencyV. Using Eq.~3! and
the expression forsi one can determine that the time consta
tp associated with this change is determined comple
by v1 , v2 , and m and is given by tp;(mv iv j )

21

;(mV2)21. The limit of slow synaptic plasticity corre
sponds tomV!1. In this limit, we have two separate tim
scales: the slowtp and fast period of oscillations 2p/V, sat-
isfying tpV@1. This fact allows us to perform averaging
dci j /dt over the period of fast oscillations. After that oper
tion we find

dc̄i j

dt
5

bmv iv je
22b

2p E
0

`

dxe2x

3Fgi j
~1 !I 0S 2bUcos

f i2f j1mVx

2 U D
2gi j

~2 !I 0S 2bUcos
f j2f i1mVx

2 U D G , ~4!

wherec̄i j is a time-averaged synaptic strength differing fro
the original ci j by a quantity of the order ofO„(tpV)21

…

@18#, and I 0 is a zero-order Bessel function. From this fo
mula, it follows that the dynamics of the average synap
strength depends mainly on the relative phase of the
coupled oscillators. This feature ensures that, whengi j

(1)

Þgi j
(2) , a fixed point solution forc̄i j is achieved when there

is a finite phase lock, that is,f12f2Þ0. However, when
gi j

(1)5gi j
(2) , the case of perfect balance between the syna

potentiation and depression, there are two fixed points:
corresponding to a synchronous state, i.e.,f15f2 , and the
second corresponding to an antiphase solutionuf12f2u
5p. Below, we show that only the synchronous solution
stable if we make a reasonable choice for theQ andH func-
tions. The case of the perfect balance between potentia
and depression leads to the most competitive situation
synaptic weights terminating on the same postsynaptic n
ron @16,19#. Also note that the time constantm cannot be too
small, i.e., the quantitymV cannot approach zero, since the
convergence to synchrony is very slow.
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FIG. 1. Weak vs strong coupling and heterogeneity.~a! Depen-
dence of the phase difference functionDu5sin$@u1(t)2u2(t)#/2% be-
tween two oscillators on the time course. Solid line correspond
weak coupling (e50.1); dashed line corresponds to strong co
pling (e50.5). A corresponding dependence of the synap
strength on the time course in the weak coupling~b! and strong
coupling~c! limits. Parameters used in simulations: weak couplin
e50.1, m55 ms, v150.085 ms21, v250.092 ms21; strong cou-
pling, e50.5, m55 ms, v150.029 ms21, v250.061 ms21. Other
parameters,a50.12,b50.15,b550, are the same in both cases
2-2
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In the synchronous state the global frequency of osci
tions must satisfy two equations:V5v i1e@aQ(0)
1bc̄i j (`)H(0)# for i , j 51,2. They suggest that the magn
tude of the emerging frequency is of the order ofv1 ,v2 , and
that the difference in the frequenciesuv12v2u;O(e). The
latter condition implies that the oscillators’ heterogene
must be of the same order of magnitude as the synaptic
pling strength, that is, weak, in order to obtain a synchron
solution.

Next, we perform a linear stability analysis for the tw
fixed points. We look for a solution in the formu1(t)5Vt
1df1(t), u2(t)5Vt1kp1df2(t), and ci j (t)5ci j (`)
1dci j (t) ( i , j 51,2), wherek50 (k51) for the synchronous
~antiphase! solution. Expanding Eq.~1! for small df i and
averaging over the period of oscillations, we find the tim
evolution of averagedf i in the form

ddf i

dt
5e$@aQ8„~21! j kp…1bci j ~`!H8„~21! j kp…#

3~df j2df i !1bH„~21! j kp…dci j %, ~5!

where i , j 51,2 and iÞ j . Note that the fluctuations in re
sidual phases are slowly varying in time, in particular on
much slower time scale than the period of oscillations. T
information enables us to use the same averaging metho
determining the time evolution of fluctuations in the synap
strength as we did in the existence part. This procedure g
erates the following equations:

ddci j

dt
5

bmv iv je
22b

p
F~V,m,k!~df j2df i !, ~6!

FIG. 2. Slow vs fast synaptic plasticity. Dependence of
phase difference functionDu between two oscillators on the tim
course. Solid line corresponds to slow synaptic plasticity (mV
'0.2); dashed line corresponds to fast synaptic plasticity (mV
'1.3). Parameters used in simulations: slow plasticity,v1

50.017 ms21, v250.023 ms21, a50.036,b50.045; fast plastic-
ity, v150.11 ms21, v250.15 ms21, a50.24, b50.30. Other pa-
rameters,m510 ms,e50.3, b550, are the same in both cases.
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where i , j 51,2 (iÞ j ) and the functionF(V,m,k) is given
by

F~V,m,k!5E
0

`

dxe2xI 1S 2bUcos
mVx1kp

2 U D
3Ucos

mVx1kp

2 Utan
mVx1kp

2
, ~7!

whereI 1(x) is a first-order Bessel function.
Equations ~5! and ~6! represent the stability equa

tions, which can be rewritten in a shorter notation
d(dX)/dt5MdX, with a four-dimensional vectordX
5(df1 ,df2 ,dc12,dc21) and a 434 stability matrix M .
This matrix has two degenerate zero eigenvalues, the
being a consequence of the translational phase invaria
~the functionsQ andH depend only on the relative phase
the oscillators!, and the second corresponding to a conser
tion law associated with the total synaptic strength betw
two reciprocally connected oscillators@i.e., c12(t)1c21(t) is
time independent#. The remaining two eigenvalues are neg
tive, i.e., the corresponding fixed point is stable, only if t
following two conditions are satisfied:~i! a@Q8(kp)1Q8
(2kp)#1b@ c̄12(`)H8(kp)1 c̄21(`)H8(2kp)#.0, and
~ii ! b@H(kp)1H(2kp)#F(V,m,k).0, where the prime
denotes a derivative. For many biophysical models@20,21#
the coupling functionsH and Q can be computed@22# and
we have thatH(0).0,H8(0).0,Q8(0).0, and H8(6p)
,0,Q8(6p),0. Using these inequalities we find that on
the conditions corresponding to the synchronous fixed p
(k50) are satisfied. The antiphase solution (k51) breaks
condition~i!. These results suggest that only the synchron
state is stable.

It is interesting to ask how sensitive the synchronization
to the assumption of weak coupling between oscillators, th

FIG. 3. Effect of sparseness of connections on synchrony.
tivity of N550 oscillators as a function of time. Dots denote firin
times of a given oscillator. For every excitatory synapse we to
gi j

(1)5gi j
(2) . Parameters used:m55 ms,e50.3, average connectiv

ity 25%, a50.48, b50.60, b550. Frequenciesv i are uniformly
distributed between 0.08 ms21 and 0.12 ms21.
2-3
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weak heterogeneity, and slow synaptic plasticity. In Fig. 1
display the results of simulations of two coupled oscillato
with different levels of synaptic coupling and oscillator he
erogeneity. We used random initial conditions for the valu
of phases and synaptic strengths, and we tookQ(x)5sinx
and H(x)5cosx1g sinx ~g is a small positive constant!.
There is a close relationship between the strength of coup
and the level of heterogeneity. In the case of a weak het
geneity@2uv12v2u/(v11v2)'0.08#, the coupling must be
weak too, in order to obtain a synchronous state. For str
heterogeneity @2uv12v2u/(v11v2)'0.70#, synchrony
emerges only in the strong coupling limit. These results s
gest that the key factor in achieving synchrony is that
synaptic coupling must be of the same order of magnitud
the oscillator heterogeneity, and additionally that this hete
geneity does not have to be weak. Interestingly, for
strong coupling/heterogeneity regime, synchrony is achie
even faster than for weak coupling/heterogeneity. The s
apses achieve equilibrium at about the same time that
synchronous state emerges@Figs. 1~b! and 1~c!#. Note also
that the sum of synaptic strengths does not depend on t
which is a consequence of Eq.~2!. We also performed simu
lations of two coupled oscillators with slow and fast synap
plasticity ~Fig. 2!. This small network converges to a sy
chronous state only when the synaptic plasticity time c
stanttp is much larger than the period of oscillations 2p/V
~slow synapses!. When the period is increased, i.e.,tpV
;1 ~fast synapses!, then the synchrony is unstable and t
phase differenceu22u1 oscillates in time around zero~Fig.
2!. These oscillations also manifest themselves in co
sponding changes in the synaptic strengths~not shown!.

In Figs. 3 and 4, we present the results of simulations
the dynamics of a large network containingN550 heteroge-
neous oscillators. The uncoupled frequencies of oscillati
v i ( i 51, . . . ,N) are distributed uniformly between som
vmin and vmax, the coupling is moderate (e50.3), and the
elements of the connectivity matrixk i j are random and non
symmetric with diagonal elements equal to zero. We are
marily interested in how~i! sparseness in synaptic conne
tions, ~ii ! an imbalance in the synaptic potentiation a
depression, and~iii ! the topology of the connectivity matrix
influence the synchronization. In the regime of perfect b
ance between potentiation and depression the synch
turns out to be insensitive to the degree of network conn
tivity up to a very low connectedness. As an example, in F
3 we display the activity of oscillators as a function of tim
in a sparsely connected random network~25% average con
nectivity!. Note that synchrony is achieved after only a fe
spikes. A regime of imbalance between potentiation a
depression is modeled by puttinggi j

(1)5(11qh i j )ai j and
i.
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(2)5ai j , whereai j is some nonsymmetric random matr

and h i j are uniformly distributed between21 and 1. The
latter choice implies that in a population of oscillators the
are approximately as many potentiated as depressed
apses. We varied the imbalance parameterq from zero to
some small finite value and examined how this affects
synchrony. Again, it turns out that the degree of synchron
quite high even for substantial values ofq, strong heteroge-
neity, and low random connectedness~Fig. 4!. It is interest-
ing to note that the synchrony is insensitive to the topolo
of oscillator connectivity, i.e., the synchrony is stable f
both symmetric~reciprocal! and nonsymmetric matricesk i j .

We investigated a network of heterogeneous neural os
lators with plastic excitatory synapses. In the regime
which there is a balance, even imperfect, between poten
tion and depression in the synaptic efficacies, we find that
network converges to a stable synchronous state. Such a
anced state could be produced by some, as yet unkno
slow process, which regulates the interplay between po
tiation and depression. Note that synchronization, which
product of this balanced state, is fostered by the plastic
citation, and inhibition does not play a part in it. This fa
could have functional implications for synchronization b
tween cortical areas, which are connected primarily by ex
tatory synapses.

The work was supported by NSF Grant No. DM
9972913.

FIG. 4. Impact of synaptic plasticity imbalance on synchron
The amplitude of imbalance between potentiation and depressio
q50.2. Frequenciesv i are uniformly distributed between 0.0
ms21 and 0.13 ms21. Other parameters and notation are the same
in Fig. 3.
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